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The aim of our contribution is to present the analogy between the Hamiltonian Analyt-

ical Optics and the Beam Dynamics. We follow the Hamilton’s memoir by means of a
revision of the text, where it is discussed an application of Lagrange δ-calculus. After

an philological introduction we consider the correspondence between the trajectory of

particles in a circular accelerator and rays in an optical system or a wave guide. An ex-
periment, with a laser on an optical system with mirrors and lenses simulating a FODO

cell, showed that the ray bundles move on an ellipse in agreement with the linear theory.

We consider here a cylindrical optical fiber with a radially varying refraction index such
that n2(r) is quadratic to reproduce the betatronic beam dynamics between two subse-

quent nonlinear equally spaced thin elements. The nonlinear effect can be introduced
with short nonlinear insertions where n2 depends on the transverse coordinates x, y and

is polynomial of degree three or higher. The Poincaré map for the rays is approximated

by the Hénon map, which describes the beam dynamics, provided that d the rays do not
reach the boundary where the refections would introduce a different dynamic behavior.

Indeed the billiard like dynamics of rays reflecting at boundaries has been analyzed in

the literature for laser beams propagating in a waveguide or an optical cavity and the
chaotic behaviour was found to be relevant for applications, but the correspondence with

beam dynamics is lost.
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1. Introduction

The laws which characterized the classical geometrical optics before W.R. Hamil-

ton1, laws which depend on the optical experience and researches, are the following

results (as postulates or axioms) :

• A.1: The rays of light propagate as straight lines.

• A.2: The angles of incidence and of reflection (which stay in the same plane)

are equal.

• A.3: Relating to the refraction, the rays obey the sinus law.

• A.4: The light rays cross without thwarting themselves.

• A.5: The light velocity is finite and constant.

Extending the validity of these Principles, he established a fundamental analogy

between Optics and Mechanics. In fact Hamilton bases his method on a combination
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of a Variational Principles with partial differentials equations and the individualiza-

tion of a characteristic function in optics (which depends on the fundamental laws

of the catoptrics) together with a principal function in mechanics (which depends

on Newton’s equations). In the history of Mechanics this analogy was considered at

least for another important occasion: the solution of the brachistochrone problem

by Johann Bernoulli in a memoir of 16972. It is the following well known problem:

given two points A and B in a vertical plane to find the path AMB down which a

movable point M must, by virtue of its weight, proceed from A to B in the shortest

possible. time. Johann ibid writes:

[...] Leibniz, in the Acta Eruditorum, 1682, pp. 185 and successively, and soon the famous

Huygens in his Treatise on light, p.40, have demonstrated this more comprehensively and, by most

valid arguments, have established the physical, or better the metaphysical principle which Fermat

seems to have abandoned [...], remaining satisfied with his geometric proof and giving up the rights

all too lightly.

Johann reverses the arguments, so

Now we shall consider a medium that is not homogeneously dense, but consists of purely

parallel horizontally superimposed layers, each of which consists of a diaphanous matter of a

certain density decreasing or increasing according to a certai law. It is then manifest that a ray

which we consider as a partcle will not be propagated in a straight line, but in a curved path [...].

By means of this analogy Johann Bernoulli resolves in a neat way the brachis-

tocrone problema

The topic of the analogy Optics-Mechanics is also linked to so-called Fermat’s

principle of least time and to the least action principle of Maupertuis. Of cours

even the recherches of Leibiniz and of Newton have to seen and analyzedb.

Beam Dynamics of large colliders has opened a new field of application to Clas-

sical Mechanics, due to the presence of nonlinear effects introduced by multipolar

magnets. Understanding the role of nonlinear resonances which overlap creating

regions of chaotic motion in phase, which induce particles transport, is a key issue

to provide an analytical stability estimates and to control the boundary of rapid

escape region (dynamic aperture)5. The validation of the proposed models and

methods, such as the Birkhoff normal forms5, requires an experimental activity on

the accelerator machine that can be both expensive and complex due to the setup

requirements. From this viewpoint the possibility of proposing optical experiments

based on the analogy between Geometrical Optics and Classical Mechanics can be

helpful for the study of some nonlinear effects and for an analogic simulation of

beam dynamics6. In this paper we extend a previous proposal based on an opti-

cal system with lenses and mirrors, where the nonlinear effects are introduced by

aberrations7, by considering the nonlinear dynamics of a laser beam propagating in

an optical fiber with a varying refraction index. The propagation of light in fibers

and cavities has been intensively investigated and the onset of chaotic behavior

aSee3 pp. 39-45
bSee4 Chap.V, pp.255-275. This book includes a lot of historical topics about the mechanics.
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has been exploted to concentrate and extract the light. The optical simulation we

consider consists of a cylindrical fiber with a radially decreasing refraction index to

focus the light on the axis and short insertions to simulate the non linear effect of

a sextupole or higher multipole. In this way a correpondence with the dynamics

of a FODO cell, the basic unit of a symmetric ring, is obtained. The conditions to

insure the paraxial approximation, to avoid the reflection on the fiber boundary and

to prevent reaching the fast instability region, delimited by the dynamic aperture,

are examined. These conditions are fulfilled for the typical parameters range of a

symmetric circular accelerator. Arranging the fiber of a few mm radius as a circular

ring 3 m long the light makes one million turns in 10 ms and the major issues are

the injection and the turn by turn detection of the phase space coordinates of a

single ray or of a rays bundle, described by the Liouville equation. Though the

correspondence with the beam dynamics is lost, the optical fibers or cavities, where

reflection take place, are very interesting from the point of of dynamics and for for

applications. A short review of the subject is presented.

The possibility of simulating the run of a hadron accelerator with a small apparatus

is appealing and if the injection and detection problems can be solved it might be

complementary to numerical simulations.

1.1. Algebraic expressions of the reflection and the refraction

At first we consider the reflection case c. Hamilton says:

“[1.] When a ray of light is reflected at a mirror, we know by experience, that the normal to

the mirror, at the point of incidence, bisects the angle between the incident and the reflected rays.

If therefore two forces, each equal to unity, were to act at the point of incidence, in the directions

of the two rays, their resultant would act in the direction of the normal, and would be equal to

twice the cosine of the angle of incidence”.

ρ denotes the incident ray and ρ′ the reflected ray. Now, if we denote by ρl,

ρ′l, nl, the angles which the two rays and the normal make respectively with any

assumed line l and by I the angle of incidence, we shall have the following formula:

cos ρl + cos ρ′l = 2 cos I cosnl (1)

which is the analytic representation of the known law of reflection.

Of course ρ = ρ(x, y, z) and ρ′ = ρ′(x, y, z). If we denote by: ρx, ρy, ρz; ρ′x,

ρ′y, ρ′z; nx, ny, nz the angles which the two rays and the normal make respectively

with three rectangular axes, x, y, z, from (1), we obtain the equations:

cSee W.R.Hamilton, ”Theory of systems of rays” (1828). Part First On ordinary system of reflected
rays, Section I. Analyrtic expression of the law of ordinary reflection
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
cos ρx+ cos ρ′x = 2 cos I cosnx

cos ρy + cos ρ′y = 2 cos I cosny

cos ρz + cos ρ′z = 2 cos I cosnz

(2)

which determine the direction of the reflected ray, when we know that one of

incident ray, and the tangent plane to the mirrord.

Likewise for the refraction Hamiltone determines the following formula

cos ρl +m cos ρ′l = (cos ρn+m cos ρ′n) cosnl (3)

where: m = sin ρn
sin ρ′n , m depends on the nature of the mediums, ρ is the incident

ray, ρ′ is the refracted ray and n is the normal. ρn and ρ′n are the angles which

respectively the incident and the refracted rays make with this resultant or normal

n. ρl, ρ′l, nl are the angles which three lines ρ, ρ′, n make respectively with any

assumed line l. As well as, if ρx, ρy, ρz; ρ′x, ρ′y, ρ′z; nx, ny, nz denote the angles

which the two rays and the normal make respectively with three rectangular axes,

x, y, z, we obtain f
cos ρx+m cos ρ′x = (cos ρn+m cos ρ′n) cosnx

cos ρy +m cos ρ′y = (cos ρn+m cos ρ′n) cosny

cos ρz +m cos ρ′z = (cos ρn+m cos ρ′n) cosnz

(4)

We remark the direction of the incident ray is reverse in comparison with that

one of refracted ray. Hence the (2) and (4) characterize the algebraic aspects of the

Hamiltonian Optics.

1.2. Analytic examen of the reflection and of the refraction

At first we examine the reflection. Hamilton utilizes the symbol δx [instead of dx

] in order to denote a point very near x. In the classical approach to the calculus

of variations (see i.e.8), if for instance f(x) is a function, that is a curve, δf(x)

represents a curve very close to f(x). Therefore δx represents a straight line which

passes by the point P ≡ (x, y, z) of incidence, very close to a straight line by P ,

parallel to the axis x. A point P ′ infinitely near P has the following coordinates:

P ′ ≡ (x+ δx, y + δy, z + δz) and because ]nx = ]ny = π
2 , z//n, if P ′ is upon the

mirror we have the following identity

cosnxδx+ cosnyδy + cosnzδz = 0 (5)

dIbid Hamilton says: ”(2) is the analytic representation of the known law of reflection, and includes
the whole theory of Catoptrics”.
eSee W.R.Hamilton, ”Theory of systems of rays” (1828). Part Second On ordinary systems of
refracted rays, Section XIV. Analyrtic expression of the law of ordinary refraction.
fIbid Hamilton says: ”(4) is the analytic expression of the known law of ordinary refraction, and

includes the whole Theory of Dioptrics”.
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being cosnx = cosny = 0 , cosnz = 1, and δz −→ 0. Of course, even if the

operator δx is conceptually different than dx, according to the Lagrange δ−calculus,

they have interesting relations between themg. Moreover we write cos(ρ, x+ δx) =

cos ρxδx and likewise.

If one replaces (5) in (2) one obtains

cos ρxδx+ cos ρyδy + cos ρzδz + (6)

cos ρ′xδx+ cos ρ′yδy + cos ρ′zδz = 0

Now we consider a point C ≡ (X,Y, Z) on ρ and a point C ′ ≡ (X ′, Y ′, Z ′) on

ρ′, where PC = |ρ| , PC ′ = |ρ′| and |ρ| 6= |ρ′|. Then if we take in account the

Euler-Lagrange symbolism for the calculus of variations, we have

δρ =
∂ρ

∂x
δx+

∂ρ

∂y
δy +

∂ρ

∂z
δz (7)

Likewise

δρ′ =

(
∂ρ′

∂x
δx+

∂ρ′

∂y
δy +

∂ρ′

∂z
δz

)
(8)

Besides, if we put

ρ = 2
√

(X − x)2 + (Y − y)2 + (Z − z)2 (9)

and

ρ′ = 2
√

(X ′ − x)2 + (Y ′ − y)2 + (Z ′ − z)2 (10)

from which

∂ρ

∂x
=

1 · 2(X − x)(−1)
2
√

(X − x)2 + (Y − y)2 + (Z − z)2
= (11)

− (X − x)

ρ
= −cos ρx

ρ
= − cos ρx

Analogously for y, z and ρ′. From (611), we obtain

δρ+ δρ′ = 0 (12)

The equation (12) represents the Principle of least Action. Hamilton says:

gLagrange’s δ-calculus was studied also by Euler (see in particular8 (1766)). The relations between
δ and d are the following (see also3 pp. 237- 239):

1. The operators δ and d commute, that is δd = dδ

2. The operator δ operates with the same rules as d
3. The operator δ and the integration operator commute, that is δ

∫
=

∫
δ

In9 Euler defines δ so

δf(x, t) =def dt
∂f

∂t|t=0

For instance f(x, t) = f(x, 0)+ tV (x) that is Euler embeds a given function f(x) in a family f(x, t)
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It [Principle] expresses that if the coordinates of the point of incidence were to receive any

infinitely small variations consistent with the nature of the mirror, the bent path ρ + ρ′ would

have its variation nothing; and if light be a material substance, moving with a velocity unaltered

by reflection, this bent path ρ+ρ′ measures what in mechanics is called the Action, from the one

assumed point to the other. [...]

[...] The formula (12) expresses that if we assume any two points, one on each ray, the sum of

the distances of these two assumed points from the point of incidence, is equal to the sum of their

distances from any infinitely near point upon the mirror.[...]

As Hamilton says, also Laplace obtained the equation (12).

Now we present the refraction case. If one considers three points respectively

on the directions ρ, ρ′ and n (which pass by the incidence point P ≡ (x, y, z)) and

these three points are infinitely near P , the variations δρ, δρ′ and δn of the distances

between P and these three points are proportional to the direction cosines of the

lines ρ, ρ′ and n. Hence the (3) becomes

δρ+mδρ′ = (cos ρn+m cos ρ′n)δn (13)

When one takes P infinitely near the refracting surface one has δn → 0, hence

the (13) reduces itself to the Principle of Least Action, that is

δρ+mδρ′ = 0 (14)

where - as Hamilton says - ”the distances on ρ and ρ′ are positive if they are

measured on the rays themselves, negative when on the rays produced”.

From (14) we have

ρ+mρ′ = const. (15)

The class of surfaces which verify the (15) ”was first discovered by Descartes h ,

on which account we shall call the Cartesian Surfaces. In the AppendixA we report

the details of the Hamilton approach to define focal mirrors and focal refrectors.

1.3. On the Characteristic Functions

The Characteristic Function depends on the particular combination of optical de-

vices or instruments. It expresses a law of dependence of the final and initial direc-

tions of a linear path of light on the final and initial positions. Hamilton proposes

two kinds of this function. For the case of reflection we consider the mirror as the

plane x, y and the point B ≡ (x0, y0, 0) as incident point. The path of light ρ′ goes

from an object A ≡ (x′, y′, z′) (source of light) to B , where the ray is reflected, and

from B to C ≡ (x, y, z) (i.e. an eye), so we have the reflected ρ. The initial ray ρ′

hSee Oeuvres, VI, Paris 1902, pp.424-431
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has the direction cosines α′, β′, γ′ and the reflected ray ρ the direction cosines α,

β, γ. In this case the characteristic function will can be

V(x, y, z;x′, y′, z′) (16)

= 2
√

(x− x′)2 + (y − y′)2 + (z − z′)2

One can easily show that

α =
∂V
∂x

; β =
∂V
∂y

; γ =
∂V
∂z

(17)

α′ =
∂V
∂x′

; β′ =
∂V
∂y′

; γ′ =
∂V
∂z′

Hamilton establishes the variation of V by the following expression

δV = δ

∫
vds (18)

where v , which is a function of α, β, γ, is the corpuscolar velocity along the ray

and s is the lenght of the optical path.

But it is possible to have, both for the reflection and for refraction together, an

expression which individualizes the behaviour reflection-refraction of a optical path.

So Hamilton asserts that when a sequence of rays, which starts from a source of

light, are reflected and refracted any number of times as far as a final medium, we

have a generalization of the (A.21), that is

n∑
i=1

miρi = const. (19)

where mi = 1 in the reflection case. Concerning this Hamilton holds the follow-

ing proposition as an important Theorem of Optics:

When any system of homogeneous rays, issuing from a luminous point or from a perpendicular

surface, has been any number of times modified by any combination of ordinarily reflecting and

refracting surfaces, the final rays are cut perpendicularly by a series of surfaces, namely by the

Surfaces of Constant Action

In this way the (19) can be considered a characteristic function.

Finally, in this context, the variational form of Fermat’s principle is given by

the following expression (see10)

δ

b∫
a

n(x)ds = 0 (20)

where n(x) is the refraction index, s is the length of the optical path and a, b

two fixed points in the space.
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2. Hamilton’s equations of a beam

Before considering an optical model for the betatronic dynamics, we shortly intro-

duce the basic concept of the Hamiltonian dynamics of charge particles in circular

accelerators. The Hamiltonian for the motion of a charged particle in a circular

ring has the following expression in the paraxial approximation

H =
p2x
2

+
p2y
2

+ V (x, y, s) (21)

where px = dx/ds, py = dy/ds and s = v0 t denoting with v0 the particle velocity.

The potential is given by

V =
1

2

x2

R2
+

1

2
K1(s)(x2 − y2)− 1

6
K2(s)(x3 − 3xy2) + . . . (22)

The first contribution is due to the dipolar field and R = mcv0γ/eB0 is the radius

of the circular orbit, the second term is the potential of the quadrupoles whose

strength is piecewise contant with alternating signs, the third one is the contribution

of the sextupoles and so on. The constant focusing approximation is obtained by

replacing the piecewise constant quadrupolar strength with a constant one such

that the focusing is uniform on the x and y directions in the transverse plane.

This type of focusing is provided by solenoids. However a constant focusing model

provides exactly the same Poincaré map if the ring is a sequence of m identical

arcs having the same focusing and defocusing quadrupoles with a thin sextupole

at the the beginning. One of these arcs, known as FODO cells, is schematically

represented in figure 1 left. The stregth of the first sextupole of length ε can be

written as K2(s) = k2δε(s) where k2 = εK2 is the integrated sextupolar gradient

and δε(s) = 1/ε if 0 < s < ε and δε(s) = 0 if ε < s < `. On the lattice δε(s) is

periodic with period ` and its ε→ 0 limit is the periodic Dirac function with perod

`. This limit is taken keeping k2 constant. The Poincaré map at s = 0 mod ` can

be explicitly written and is given by

(
xn+1

pxn+1

)
= Lx

(
xn

pxn + 1
2k2 (x2n − y2n)

) (
yn+1

py n+1

)
= Ly

(
yn

pxn − k2 xnyn

)
(23)

where the linear map Lx statisfies the constraint |Tr (Lx)| < 2 and so that it is

conjugated to a rotation

Lx = UxR(ωx)U−1x U−1x =

(
β
−1/2
x 0

0 β
1/2
x

)(
1 0

αx/βx 1

)
(24)

and the same expression holds for Ly. We perform the canonical change of co-

ordinates x′ = x, p′x = px + xαx/βx and the same for y, py assuming that

ωxβx = ωyβy = λ where λ is comparable with ` though not equal to `. The
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map (3) written in the new momenta p′x, p
′
y, we still denote px, py, is the same as

the Poincaré map at s = 0 modλ of the following Hamiltonian

H =
p2x
2

+
p2y
2

+
x2

2β2
x

+
y2

2β2
y

− k2
6

(x3 − 3xy2) δ(s) (25)

where δ(s) is the periodic δ function of period λ. We assume from now on that

βx = βy = β so that the quadratic Hamiltonian rotationally invariant. We perform

the canonical transformation x′ = xβ−1/2, p′x = β1/2 py and the same for y, py
followed by the scaling with β3/2k2/2 for all the coordinates, we scale s with λ and

scale the Hamiltonian according to

X =
k2
2
βx Px =

k2
2
β2 px Y =

k2
2
βy Py =

k2
2
β2 py

σ =
s

λ
H = `

(
k2
2

)2

β3H (26)

Such a transformation leaves the equations of motion invariant. In the new coordi-

nates the scaled Hamiltonian reads

H =
ω

2
(P 2
x + P 2

y +X2 + Y 2)− 1

3

(
X2 − 3XY 2

)
δ(σ) ω =

λ

β
(27)

where δ(σ) is periodic of period 1. If ω � 1 then the orbit of the Poincaré map at

σ = 0 mod 1 is accurately interpolated by the orbit of the Hénon-Heiles Hamiltonian

given by (27), where the δ function is replaced by 1. After further scaling X =

ωX ′, Px = ωP ′x and H = ω3H′ the interpolating Hamiltonian

H′ =
1

2

(
P ′x

2
+ P ′y

2
+X ′

2
+ Y ′

2
)
− 1

3
(X ′

3 − 3X ′Y ′
2
) (28)

wallows to determine the stability boundary. Indeed this Hamiltonian has three

saddle points P ′x = P ′y = 0 and X ′ = −1/2, Y ′ = ±
√

3/2 and X ′ = 1, Y ′ = 0

where H′ = 1/6. The stability region is H′ ≤ 1/6. In the X ′, Y ′ plane the stability

boundary is an equilateral triangle and the the circle X ′
2

+ Y ′
2

= 1/4 is within

it. The sphere of radius 1/2 given by P ′x
2

+ P ′y
2

+ X ′
2

+ Y ′
2 ≤ 1/4 is within the

stability region H′ ≤ 1/6. In the orginal coordinates the condition reads

x2 + y2 + β2(p2x + p2y) ≤ r2A rA =
ω

k2β
(29)

We call rA the dynamic aperture radius. The ellipsoid defined by (29) is within the

stability region. The section with the (x, y) plane is a disc of radius rA, with the

px, py plane a disc of radius rA/β and the section with the x, px or x, py planes an

ellipse os semiaxis rA and rA/β, see AppendixB.
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3. Hamilton’s equations of rays

In geometrical optics the rays trajectories are the stationary solutions of the Fer-

mat’s functional

F =

∫ B

A

n ref (x, y, z) ds (30)

where the endpoints are fixed, n ref denotes the refraction index n = c/v ≥ 1

with v is the light velocity in the medium. If the rays propagation is quasi rec-

tilinear, introducing Cartesian coordinates with the z axis along the propagation

direction, we parametrize the trajectory according to x = x(z), y = y(z) so that

ds =
√

1 + x′2 + y′2 dz where x′ = dx/dz, y′ = dy/dz. The stationary solution

satisfies the Euler-Lagrange equations with Lagrangian L = n ref

√
1 + x′2 + y′2.

The conjugate momenta are

px = n ref
x′√

1 + x′2 + y′2
= n ref

dx

ds
py = n ref

y′√
1 + x′2 + y′2

= n ref
dy

ds

(31)

The Hamiltonian is

H ray = x′px + y′py − L = − n ref√
1 + x′2 + y′2

= −
√
n2ref − p2x − p2y (32)

If n depends only on z then the momenta are invariant and this corresponds to the

Snell law of refraction. Indeed consider a ray propagating on the x, z plane and let

θ be the the angle the tangent to ray forms with the z axis then px = n ref dx/ds =

n ref sin θ is constant along the ray trajectory. It is convenient to set

n2ref = n20(1− 2V ) (33)

and to perform the scaling H/n0 → H, px/n0 → px, py/n0 → px so that the

Hamiltonian becomes

H = −

√
1− 2

(
p2x + p2y

2
+ V (x, y, z)

)
(34)

We consider the case of rays propagating in a cylindrical wave guide of radius

rw, If the rays propagate very close to wave guide axis z we can use the paraxial

approximation. If |px| � 1, |py| � and |V | � 1 the Hamiltonian is approximated

by

H = −1 +
1

2
(p2x + p2y) + V (x, y, s) (35)

The variation of the refraction must be small to allow a paraxial ray propagation. In

general given a potential V we may find a medium with refractive index n according

to (33), provided that V < 1/2 in the region of interest. This condition allows to

find a n0 such that n ≥ 1.

Rather than the propagation of a single ray is convenient to consider also the prop-

agation of a ray bundle. Letting ρ0(x, px, y, py) be the initial distribtion at s = 0 of
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the rays budle the distribution ρ(x, px, y, py, s) at any further section s of the wave

guide satisfies the Liouville equation

∂ρ

∂s
+ [ρ,H] = 0 (36)

where [ . , . ] denotes the Poisson Bracket.

Fig. 1. Left frame: FODO cell with thin sextupole. Right frame: optical system with four mirrors

and two lenses simulating a FODO cell

3.1. Mirror and lenses

An optical analogue of the accelerating ring with identical FODO cells can be

achived with mirrors and lenses. In the case of a single cell m = 1 a possible

arrangement is shown in figure 1 right. A full correspondence is achieved in the

x, px phase plane if the beam is flat, the reference orbit is a square obtained with

four thin dipoles, the quadrupoles are thin and the rays propagate in a plane or-

thogonal to the mirrors and to the the thin focusing and defocusing lenses. The

inclusion of a thin sextupole and an equivalent lens allows a perfect correspondence

to hold also in the nonlinear case. An experiment was performed6,7 and a good

agreement with the basic theory was found. In order to have a correspondence in

the 4D phase space x, px, y, py we need lenses which are convergent in one plane

and divergent on the other and non nonlinear lenses reproducing a sextupolar kick.

A serious problem with this setup is the intensity loss due to the propagation in

the air, to reflections and to the crossing of the lenses. A vacuum chamber would

help to reduce the losses, but the complexity and cost of the system would increase

considerably

3.2. The waveguide analogue

An alternative optical model, whose rays are just the trajectories of a particle with

Hamiltonian given by equation (25), is provided by a straight cilindrical waveguide

with axis along z and of radius rw, whose refraction index n is given by equation

(33). Letting V max = maxV (x, y, z) for r < rw and any z, the condition n20 >
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(1 − 2V max )−1 must be satisfied, which implies V max < 1/2. We consider an

axially symmetric model in which βx = βy so that refraction index depends only

on the radial coordinates, except for short sections corresponding to the sextupoles.

Using polar coordinates the rays the Hamiltonian (32) reads

H =
√

1− p2r − p2φ/r2 − r2/β2 (37)

if the sextupoles are absent. In this case pφ is a first integral of motion. The

symmetric waveguide where n = n(r) is the simplest to implement. The presence

of sextupolar insertions renders the use of Cartesian coordinates more convenient.

Cylindrical coordinates were used for a model where n2 is quadratic in r2 rather

than r so that H has an elliptic and an hyperbolic critical point in the r, pr phase

plane11. The sextupolar insertion modeled as kick in (25) has to be replaced with

a section of finite lengh ε so that the condition 2V max < 1 can be satisfied. For the

paraxial approximation to hold we require that p2x+p2y � 1 and |V | � 1 for r ≤ rw.

Recalling that the potential V (x, y, s) is a periodic function of period λ, the first

focusing section ε < s < λ we have 2V = r2/β2 and the paraxial approximation

holds if rw � β. In the first sextupolar intertion insertion 0 < s < ε we have

2V = −K2

3
(x3 − 3xy2) =

k2
3ε
r3(3 cos θ − 4 cos3 θ) (38)

We use of polar coordinates to show that 3 cos θ − 4 cos2 θ varies between −1 and

1 reached for cos θ = −1/2 and cos θ = 1/2 respectively. As a consequence the

paraxial approximation holds provided that k2r
3
w/(3ε)� 1.

We should not forget that some ray tajectories could reach the waveguide boundary

r = rw and reflect on it. When this occurs we have the dynamics of a billiard and

it is no longer described by (34) or (35). In this case the correspondence between

the rays in the waveguide and the particles in the ring is lost.

Except for the short nonlinear insertions which change the rays directions px, py, the

trajectories in the (x, px) and (y, py) phase planes and in the (x, y) plane are arcs

of ellipses. After the canonical change of coordinates x′ = β−1/2 x, p′x = β1/2 px,

y′ = β−1/2 y, p′y = β1/2 py the trajectories are arcs of circles in the phase planes

but in the x′, y′ plane the orbits are still arcs of ellipses. Letting xn, pxn, yn, py n the

phase space coordinates after the n-th sextupolar insertion (n−1)λ < s < (n−1)λ+ε

the x, y coordinates in the interval (n− 1)λ+ ε < s < nλ are given by

x(s) = xn cosφ+ βpxn sinφ y(s) = yn cosφ+ βpy n sinφ (39)

where φ =
(
s− (n− 1)λ− ε

)
/β. No reflections occur as long as

x2(s) + y2(s) ≤ x2n + y2n + β2(p2xn + p2y n) + 2β(|xn| |pxn|+ |yn| |py n|) ≤

≤ 2
(
x2n + y2n + β2(p2xn + p2y n)

)
≤ r2w (40)

where we used the inequality 2|a| |b| ≤ a2 + b2.
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We resume the conditions for an optical experiment on a waveguide of radius rw
which simulates the motion of particle in a ring with identical FODO cells with a

sextupole, figure 1 left. The linear part of the FODO cell gives a phase advance ω

and the beta function β at the endpoints of the cell. The nonlinear part is a thin

sextupole at the beginning of the cell with integrated gradient k2 = ` sex K2. In the

waveguide it is replaced by a section of length ε with the same integrated gradient

K2 and gradient k2/ε

n2ref = n20 ×


1 + k2

3ε (x3 − 3xy2) 0 < s < ε

1− x2 + y2

β2 ε < s < `

(41)

where (` − ε) = β ω. We choose ε � ` so that the non linear contribution is very

close to a kick and ` ' ωβ. The first condition we impose is |V | � 1 for the

paraxial approximation to hold, and therefore we may choose n0 rather close to 1,

fors instance n0 = 1.2. The second condition to impose is on the dynamic aperture.

We rquire that rw < rA where the dynamic aperture radius is given by (29) in

the approximation ω � 1. The estimate (29) is still reliable up to ω ' 1. The

Hamiltonian describing the rays trajectories in a waveguide with refraction index

diven by (41) in the paraxial approximation is given by

H =
p2x
2

+
p2y
2

+
x2 + y2

2β2
(1−Θε(s))−

k2
6ε

(x3 − 3xy2) Θε(s) (42)

where Θε(s) is a periodic step function of period λ such that Θε(s) = 1 for 0 < s < ε

and Θε(s) = 0 for ε < s < λ. This Hamiltonian describes the rays trajectories but

since ε/λ� 1 the orbits of its Poincaré map at s = 0 mod λ are well approximated

by the orbits of the Poincaré map of Hamiltonian ((25) which after the scaling (26)

leading to the Hamiltonian (27) are precisely the orbits of 4D Hénon map given by(
Xn+1

Pxn+1

)
= R(ω) =

(
X

Pxn+1 +X2
n − Y 2

n

) (
Yn+1

Py n+1

)
= R(ω) =

(
X

Pxn+1 − 2Xn Yn

)
(43)

The choice we make to insure that we are within the stability region is

• rw < rA =
λ

2k2β2

The paraxial appromation requires that

• • rw
β
� 1

k2
3

r3w
ε
<

1

3

λ

ε

(
rw
β

)2

� 1
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and the reflections are avoided provided that

• • • x2n + y2n + β2(p2xn + p2y n) ≤ r2w
2

We have taken into account (29) with ω = (λ− ε)/β ' λ/β, The second condition

in •• puts a lower bound, easy to satisfy, on the thickness of the waveguide section

corresponding to the sextupole nonlinearity ε/` ≥ rw/(6β). Choosing initial cond-

tions according to • • • for n = 0 we are surely within the stability boundary since

rw < rA and if the condition is fulfilled for any n we are sure that reflections do not

occur. In the scaled coordinates X,Px, Y, Py where the orbit is determined by the

Hénon map, the dynamic aperture radius rA becomes RA = ω/2 and rw becomes

Rw = (rw/rA)ω/2. For simplicity we consider the orbits in the X,Px obtained by

choosing Y0 = Py 0 = 0. In this case if X2
n + P 2

xn < R2
w the absence of reflections is

insured, since the orbits between two kicks are arcs of circle. We chose the initial

conditions in a disc X2
0 +P 2

x 0 < R2
0 where R0 is chosen in such a way that reflections

are avoided at any further iteration n. An example for ω = 1.288 with Rw = 0.9RA
and R0 = 0.55RA is shown in figure 2 left.

Fig. 2. Left panel: orbit of the Hénon map in the X,Px phase plane for Y = Py = 0 with

ω = 1.288 and ν = ω/2π = 0.205. The dynamic aperture approximation obtained from the

Hamiltonian (28) Px = ±(1−X)
√

(1 + 2X)/3∗ is the Blue curve, the disc with dynamic aperture
radius RA = ω/2 is purple, the disc of radius Rw = 0.9RA is green and the disc of initial conditions

R0 = 0.55RA is read. The orbits with the initial conditions on the circle of radius R0 are blue.

As a specific example we choose a lattice of the SESAME ring see http://www.

sesame.org.jo/sesame/images/sesame-publications/Magnets.pdf.

The quadrupoles have K1 = 3 m−2 and lenght `Q = 0.2 m, the tolal lenght of the

cell is L = 4m. This gives ω = 1.306, ν = 0.208 and β = 3.4 m so that λ = ωβ = 4.4

m. The sextupoles have a gradient K2 = 50 m−3 and length 0.15 m so that the
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integrated gradient is k2 = 7.5 m−2. We choose a unique stronger setupole of

integrated gradient k2 = 20 m−2 to have a dynamic aperture radius rA ' 2 cm and

we choose accordingly rw = 1 cm. Another test case is with shorter quadrupoles

`Q = 1 cm and we get ω = 0.6, ν = 0.095 β = 6.8 so that λ = ωβ = 4 m. . In

this case we choose k2 = 4.5 m−2 to have about the same aperture rA ∼ 2 cm. The

lower value of ω renders the estimates of the dynamic aperture are more accurate.

One may consider two different arrangemets: a long straight waveguide made up

of N identical sections of lenth `. In this case the injection is simple as well as

the final recording but one can only obtain the map from the inital to the final

condition including the rays budles rather than single rays. More interesting is the

arrangement of the waveguide of lengh ` as closed circular loop. The injection can

be made with gluing the circular waveguide with another waveguide tanget to it

right at s = −λ/2 for instance, inserting a detecting system at s = λ/2 driven by

two plates capable of recording the rays transverse coordinates x, y from which the

ray direction given by px, py can be obtained, see figure 2. Since for a a tipical length

λ = 3 m the time delay between two passes is 10 ns, the pass by pass detection

might be challenging. The feasibility and cost of such an experiment require further

investigation.

3.3. Wave guides and cavities with reflections

Another interesting dynamical model is offered by the waveguides in which the

light reflects at small angles and can propagate over long distances. Wave cavities

have also beam considered in which the light propagates in the interior of a closed

reflecting domain and can escape when the incidence angle is below a critical value.

We distinguish between plane waveguides and plane resonant cavities. The simplest

integrable example of wave guide is given by two parallel lines at distance `, the

lowest of which we assume to be the x axis. The simplest example of cavity is a

circle of radius R. In the former case letting θ be the angle the ray forms with the

x axis and denoting with (xn, θn) the of the coordinates after n reflections starting

with x0, θ0 the map is simply

θn+1 = θn xn+1 = xn + 2` cot θn (44)

whereas in the case of the circle denoting with sn the arc between two susequent

reflections and θ the angle the ray forms with the tangent at the reflection point,

the map for (θn, sn) is

θn+1 = θn sn+1 = sn + 2Rθn (45)

For simplicity we assume ` = R = 1 from now on. One or both the parallel

planes of the rectangular waveguide can include corrugations of arbitrary depths12.

In this case, the particle dynamics can deviate substantially from a ballistic motion

and become diffusive with the increasing depth of corrugation13. The geometry of



29 December 2017 10:42 ws-procs961x669 WSPC Proceedings - 9.61in x 6.69in NOCE2017freg˙turch˙baz page 16

16

the corrugated waveguide considered in this contribution is shown in Figure 3. The

collision map of particles bouncing within a corrugated waveguide can be derived

also in this case through simple geometrical considerations. The equation for the

corrugated profile is

y = 1 + εf(x) (46)

and the map of two subsequent reflections with the lower boundary y = 0 is still

area preserving and can be determined as follows. Starting from x = xn with an

Fig. 3. Geometry of reflections in a plane waveguide

angle θn < π/2 we hit the upper boundary at x∗ = xn+an, y∗ = 1+ ε(xn+an). To

determine an we notice that the velocity of the ray is v = c(cos θn, sin θn). Choosing

c = 1 time τ between the rections at (xn, 0) and x∗, y∗ is such that

an = τ cos θn 1 + εf(xn + an) = τ sin θn (47)

After solving the second implicit equation to determine τ we obtain an. The next

reflection with the x = 0 axis occurs at xn+1 = xn + an + bn. The triangle with

vertices (xn, 0), (x∗, y∗), (xn+1, 0) has angles θn, 2αn, θn+1, see figure 2, where αn is

the angle between the normal ν at the upper boundary at (x∗, y∗) and the reflected

ray, which is the same as the incident angle. As a consequence we have

θn+1 = π − θn − 2αn (48)

The normal νn to the corrugated surface, see figure 3, is given by

νn =
(εf ′(x), −1)√
1 + ε2 f ′2(x)

(49)
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The incidence and reflection angle αn, see figure 3, is given by

cos(αn) = ν · vn ∗ = −ν · vn =
sin θn − εf ′(xn + τ cos θn) cos θn√

1 + ε2 f ′2(xn + τ cos θn)
(50)

The final expression for the map is obtained observing that xn+1 = xn + an + bn
where bn = y(xn + an)cot θn+1 and y(xn + an) = τ sin θn from (47). Introducing

the angle βn = π/2− αn so that sinβn = cosαn given by (50) and taking equation

(48) into account we have{
θn+1 = 2βn − θn
xn+1 = xn + τ sin θn (cot θn + cot θn+1)

(51)

where τ is the solution of the implicit equation (47). This is the map when the

ray moves forward along the positive x axis as shown by figure (3). When the rays

invert the motion under some conditions βn = π/2+αn and to avoid a cumbersome

discussion is is conveneint to consider that the velocity vector after the reflection on

the corrugated boundary is vn ∗ = (cos θn+1, − sin θn+1) and after the subsequent

reflection on the x axis it becomes vn+1 = (cos θn+1, sin θn+1). The law of reflection

imposes

vn ∗ = vn − 2νn (νn · vn) = vn + 2νn cosαn (52)

and the map, valid in any possible condition reads
θn+1 = acos

cos θn + 2
εf ′(xn + τ cos θn)√

1 + ε2 f ′2(xn + τ cos θn)
cosαn


xn+1 = xn + τ sin θn (cot θn + cot θn+1)

(53)

Remark that for ε = 0 we have θn+1 = θn and from equation (47) it follows that

τ sin θn = 1 so that the integrable map (44) is recovered. For ε � 1 a first order

expansion can be written14,15. We notice that if f(x) = −x2/2 for −a < x < a

with a < 1 then for initial condtions |π/2− θ0| � 1 and |x0| � 1 the map is quasi

integrable and the orbits in the phase space x, θ are ellipses since the boundary is a

concave mirror which has a focusing effect. If f(x) = x2/2 the boundary is convex

mirror which has a defocusing affect. In this case the orbits in phase space close to

the fixed point 0, π/2 belong to arcs of hyperbolae. For a periodic perturbation such

as f(x) = cos(x) the point (0, π/2) is an elliptic fixed point, wheres (±π, π/2) is an

hyperbolic fixed point. In Figure 4 we show the orbits of the map for f(x) = cos(x).

In a cavity the rays reflect on the boundary and if the cavity is a stadium formed

by two half circles and two parallel lines the trajectories are chaotic, as shown by

the Poincaré map16. The waveguide and the cavity can be extended to the full

3D space where the boudaries are 2D surfaces. In this case the reflection map is

a 4D symplectic map in the Lagrange coordinates (q1, q2) of the reflecting surface
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and the angles (θ1, θ2) defining the ray direction at the reflection point. Starting

from integral models such as two parallel planes or a sphere quasi integrable and

non integrable models can be built by corrugating the surfaces. In the literature

Fig. 4. Left side: orbits of the map (53) for f(x) = cos(x) and ε = 0.02. The coordinates are

x′ = x/(2π)mod1 we still denote by x and y = θ/(2π). Right side: the same for ε = 0.1

models of waveguides have been proposed17and experimentally the chaotic behav-

ior of rays in cavities was used to extract intense beams when the incidence angle

overcomes the critical value18 also using semi-classical methods19. More generally,

wave chaos based models of the propagation of acoustics wave have been derived

to ray trace and advance densities of rays within billiards with arbitrary boundary

geometry20. Furthermore, electromagnetic wave propagation within complex and

multiply connected cavities have been described in terms of scattering matrix statis-

tics, developed using random matrix theory (RMT) as well as semi-classical methods

to describe cavity eigen-energy and eigen-function distributions respectively21.

4. Conclusions

We hve examined the correspondence between the motion of a charged particle and

the propagation of a ray in a medium with variable refraction index starting from

the historical perspective. Rather than an optical arrangement based on mirrors

and lenses as previously suggested and experimentally tested, we have examined a

different setup based on an optical fiber with a radially increasing refraction index

to simulate the linear betatronic motion and thin non linear insertions to simulate

the nonlinear effect of a sextupole. We show that a fiber arranged as a circular

ring could actually simulate the basic cell of a symmetric circular accelerator. If

the difficulties concerning the injection and detection and be solved this sistem

might provide and analogical simulation of the betatronic motion complementary

to numerical simulations.
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Appendix A. Focal mirrors and focal refractors

In order to find a mirror which reflects to a given focus the rays of a given source,

we have to consider the following differential equation

(α+ α′)dx+ (β + β′)dy + (γ − γ′)dz = 0 (A.1)

where x, y, z are the coordinates of the mirror. It derives from (6) when one

puts cos ρx = α, cos ρ′x = α′, cos ρy = β, cos ρ′y = β′, cos ρz = γ, cos ρ′z = γ′ and

dx instead of δx etc. Each α, β, γ, α′, β′, γ′ is a function of x, y, z. α, β, γ depend

on the nature of the source of light and α′, β′, γ′ depend on the focus position.

”The integral of (A.1) will represent an infinite number of different mirrors, each

of which possess the property of reflecting to a given focus, the rays of the given

system [source], and which for that reason I [Hamilton] shall call focal mirrors”.

Now we want to know when the equation (A.1) is integrable. This equation, in

the first member, is composed by two parts, so

α′dx+ β′dy + γ′dz (A.2)

and

αdx+ βdy + γdz

The part α′dx + β′dy + γ′dz is always an exact differential. In fact, if F ≡
(X ′, Y ′, Z ′) is a assigned focus, by ρ′ we denote the distance between the focus F

and the incidence point P ≡ (x, y, z). So we have

X ′ − x = α′ρ′ (A.3)

Y ′ − y = β′ρ′

Z ′ − z = γ′ρ′

From (A.3) one derives ρ′ = X′−x
α′ , etc., and from which

dx

(
X ′ − x
α′

)
= − 1

α′
dx = dρ′

etc.

and

dx = −α′dρ′ (A.4)

etc.

If we replace (A.4) in the first of (A.2) we obtain

α′(−α′)dρ′ + β′(−β′)dρ′ + γ′(−γ′)dρ′ (A.5)

= α′dx+ β′dy + γ′dz = −dρ′

because, by virtue of a property of direction cosines,

α′2 + β′2 + γ′2 = 1 (A.6)
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Hence the (A.5) establishes that α′dx + β′dy + γ′dz is an exact differential.

If we take into account a well known theorem which characterizes (iff) the exact

differentials, we can have the following equation

α′
(
∂β

∂x
− ∂γ

∂y

)
+ β′

(
∂γ

∂x
− ∂α

∂z

)
+ γ′

(
∂α

∂y
− ∂β

∂x

)
= 0 (A.7)

which is verified because, in virtue of recalled theorem, we have(
∂β

∂z
− ∂γ

∂y

)
=

(
∂γ

∂x
− ∂α

∂z

)
=

(
∂α

∂y
− ∂β

∂x

)
= 0 (A.8)

But in order to find the integral of the (A.1) it is necessary establishes if we

have also

α

(
∂β

∂z
− ∂γ

∂y

)
+ β

(
∂γ

∂x
− ∂α

∂z

)
+ γ

(
∂α

∂y
− ∂β

∂x

)
= 0 (A.9)

Hamilton expounds the following reasoning. He says the functions (with three

independent variables x, y, z) α, β, γ ”will not vary when the coordinates of the

incidence point P ≡ (x, y, z) receive any variations δx, δy, δz proportional to those

cosines α, β, γ, because then the point (x+δx, y+δy, z+ δz) will belong to the same

incident ray, as the point P ≡ (x, y, z)”. That is we have the following equations

δα = α
∂α

∂x
+ β

∂α

∂y
+ γ

∂α

∂z
= 0 (A.10)

δβ = α
∂β

∂x
+ β

∂β

∂y
+ γ

∂γ

∂z
= 0

δγ = α
∂γ

∂x
+ β

∂γ

∂y
+ γ

∂γ

∂z
= 0

Moreover, if one differentiates α2 + β2 + γ2 = 1 one obtains

αdα+ βdβ + γdγ = 0

and as well

α
∂α

∂x
+ β

∂β

∂x
+ γ

∂γ

∂x
= 0 (A.11)

α
∂α

∂y
+ β

∂β

∂y
+ γ

∂γ

∂y
= 0

α
∂α

∂z
+ β

∂β

∂z
+ γ

∂γ

∂z
= 0

Now, comparing (A.10) with (A.11) it results

α
∂α

∂x
+ β

∂α

∂y
+ γ

∂α

∂z
= α

∂α

∂x
+ β

∂β

∂x
+ γ

∂γ

∂x
= 0

that is

β

(
∂α

∂y
− ∂β

∂x

)
= γ

(
∂γ

∂x
− ∂α

∂z

)
= 0 (A.12)
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Likewise from

α
∂γ

∂x
+ β

∂γ

∂y
+ γ

∂γ

∂z
= α

∂α

∂z
+ β

∂β

∂z
+ γ

∂γ

∂z
= 0

we have

α

(
∂γ

∂x
− ∂α

∂z

)
= β

(
∂β

∂z
− ∂γ

∂y

)
= 0 (A.13)

From (A.12) and (A.13) we have(
∂β

∂z
− ∂γ

∂y

)
=

(
∂γ

∂x
− ∂α

∂z

)
=

(
∂α

∂y
− ∂β

∂x

)
= 0 (A.14)

Therefore, in virtue by the previous recalled theorem also αdx + βdy + γdz is

an exact differential. Hence the equation (A.1) is integrable.

The conditions (A.14), according to another theorem which concerns the exact

differentials, geometrically have the following meaning: ”These conditions express

- as Hamilton says - that the rays of the incident system [source] are cut perpen-

dicularly by a series of surfaces, having for equation”∫
(αdx+ βdy + γdz) = const. (A.15)

Now we consider a point Q ≡ (X,Y, Z) in which an incident ray cuts one of the

surfaces (A.15), let P ≡ (x, y, z) a point of incidence and ρ the dinstance between

Q and P . Then we shall have

X − x = αρ (A.16)

Y − y = βρ

Z − z = γρ

By means of the same procedure for (A.5) we obtain

αdx+ βdy + γdz = −dρ (A.17)

where in this case we have αdX + βdY + γdZ = 0.

So the differential equation of the mirror (A.1), from (A.5) and (A.17) becames

dρ+ dρ′ = 0 (A.18)

which has as integral the equation

ρ+ ρ′ = const. (A.19)

The (A.19) ”expresses that the whole bent path traversed by the light in going

from the perpendicular surface (A.15) to the mirror, and from the mirror to the

focus, is of a constant length, the same for all the rays. In this interpretation - as

Hamilton says - of the integral (A.19) we have supposed the distances, ρ and ρ′

positive”.

In the case of refraction (refractors, in particular lens) we have:
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α, β, γ (functions of x, y, z) as direction cosines of the incident ray ρ, P ≡
(x, y, z) as point of incidence of ρ; α′, β′, γ′ (functions of x, y, z) as direction

cosines of the refracted ray ρ′(which passes through the point P ≡ (x, y, z) , on the

lens, and through the focus F ≡ (X ′, Y ′, Z ′)). Hamilton arrives to the following

differential equation:

α

(
∂β

∂z
− ∂γ

∂y

)
+ β

(
∂γ

∂x
− ∂α

∂z

)
+ γ

(
∂α

∂y
− ∂β

∂x

)
+ (A.20)

+mα′
(
∂β

∂z
− ∂γ

∂y

)
+mβ′

(
∂γ

∂x
− ∂α

∂z

)
+mγ′

(
∂α

∂y
− ∂β

∂x

)
= 0

Like for the reflection, Hamilton establishes the integral

ρ+mρ′ = const. (A.21)

”ρ, ρ′ being the paths traversed by the light in going from any particular surface

which cuts the incident rays perpendicularly, to the refractor (i.e.lens), and from

the refractor to the focus.”

Appendix B. The Hénon-Heiles Hamiltonian

Consider the Hénon-Heiles Hamiltonian

H =
p2x + p2y

2
+
x2 + y2

2
− 1

3
(x3 − 3xy2)

The critical points are solutions of

∂H

∂x
= x−x3+y2 = 0

∂H

∂y
= y+2xy = 0

∂H

∂px
= px = 0

∂H

∂py
= py = 0

and are given by

x = y = 0 x = 1 y = 0 x = −1

2
y =

√
3

2
x = −1

2
y = −

√
3

2

The first one is a minimum of V , the remainig three are saddles and are at the

vertices of an equilateral triangle whose sides have length 1. The value of H at the

saddle points is 1/6. Notice that we have

H − 1

6
=
p2x + p2y

2
+

1

6
(1 + 2x)(3y2 − (1− x)2) = 0

The stable region is given by H ≤ 1/6. Notice that the intersection of H = 1/6

with the (x, y) plane is is (1 + 2x)(3y2 − (1 − x)2) = 0 and the stability region is

the equilateral triangle defined by the intersection of the lines

x = −1

2
y = ± 1√

3
(1− x)



29 December 2017 10:42 ws-procs961x669 WSPC Proceedings - 9.61in x 6.69in NOCE2017freg˙turch˙baz page 23

23

whose vertices are the saddle points of H. We prove now that the the sphere of

radius 1/2 defined by

x2 + y2 + p2x + p2y =
1

4

is within the stability region defined by H ≤ 1/6. To this end we introduce polar

Fig. B1. Left panel: dynamic aperture blue line and bound (red line) in the (x, y) plane. Right

panel: the same in the (x, px) plane

coordinates

x = r cosφ y = r sinφ px = p cos θ py = p sin θ

so that the Hamiltonian becomes

H =
p2

2
+
r2

2
+
r3

3
f(θ) f(θ) = (3 cos θ − 4 cos3 θ)

Since f(θ) varies between −1 and 1 reaching the minimim at cos θ = −1/2, the

maximum for cos θ = 1/2. As a consequence for fixed r and p we have

H ≤ p2

2
+
r2

2
+
r3

3

Notice that r2/2 + r3/3 = 1/6 for r = 1/2. Consider now the sphere of radius 1/2.

For any point within the sphere r2 + p2 ≤ 1
4

H ≤ p2 + r2

2
+
r3

3
≤ 1

8
+

1

3

(
1

4
− p2

)3/2

≤ 1

8
+

1

24
=

1

6

As a consequence all the points of the sphere are within the stability domain. In

figure 4 we show the dynamic aperture for the Hénon-Heiles Hamiltonian and the

aperture disc of radius 1/2 in the x, y and x, px planes. In the x, px plane the

boundary is

px = ± 1√
3

(1− x)
√

1 + 2x
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